
Package: ggquickeda (via r-universe)
September 12, 2024

Title Quickly Explore Your Data Using 'ggplot2' and 'table1' Summary
Tables

Version 0.3.1.9000

Description Quickly and easily perform exploratory data analysis by
uploading your data as a 'csv' file. Start generating insights
using 'ggplot2' plots and 'table1' tables with descriptive
stats, all using an easy-to-use point and click 'Shiny'
interface.

URL https://github.com/smouksassi/ggquickeda,

https://smouksassi.github.io/ggquickeda/

BugReports https://github.com/smouksassi/ggquickeda/issues

Depends R (>= 4.1.0)

Imports colourpicker, dplyr, data.table, DT, Formula, GGally (>=
2.1.0), ggbeeswarm, ggh4x, ggplot2 (>= 3.4.0), ggpmisc, ggrepel
(>= 0.7.0), ggpubr, ggstance, glue, gridExtra, Hmisc, markdown,
methods, plotly, quantreg, rlang, scales, shiny (>= 1.0.4),
shinyjs (>= 1.1), shinyjqui, stringr, survival, survminer,
tidyr, table1 (>= 1.4.2), zoo, shinyFiles, RPostgres, forcats,
ggridges, rms, tibble, patchwork (>= 1.2.0)

Suggests knitr, rmarkdown

License MIT + file LICENSE

SystemRequirements pandoc with https support

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

Roxygen list(markdown = TRUE)

Repository https://smouksassi.r-universe.dev

RemoteUrl https://github.com/smouksassi/ggquickeda

RemoteRef HEAD

RemoteSha e004748cd639f3110472bc7cb1bfef916626ebb5

1

https://github.com/smouksassi/ggquickeda
https://smouksassi.github.io/ggquickeda/
https://github.com/smouksassi/ggquickeda/issues


2 geom_km

Contents
geom_km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
geom_kmband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
geom_kmticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ggcontinuousexpdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ggkmrisktable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
gglogisticexpdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
logistic_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
run_ggquickeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
sample_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
stat_km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
stat_kmband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
stat_kmticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Index 35

geom_km Add a Kaplan-Meier survival curve

Description

Add a Kaplan-Meier survival curve

Usage

geom_km(
mapping = NULL,
data = NULL,
stat = "km",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
na.rm = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.



geom_km 3

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.



4 geom_kmband

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Aesthetics

geom_km understands the following aesthetics (required aesthetics are in bold):

• x The survival/censoring times. This is automatically mapped by stat_km()

• y The survival probability estimates. This is automatically mapped by stat_km() smallest
level in sort order is assumed to be 0, with a warning.

• alpha

• color

• linetype

• size

See Also

The default stat for this geom is stat_km() see that documentation for more options to control the
underlying statistical transformation.

Examples

library(ggplot2)
set.seed(123)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) + geom_km()

geom_kmband Add confidence bands to a Kaplan-Meier survival curve

Description

Add confidence bands to a Kaplan-Meier survival curve



geom_kmband 5

Usage

geom_kmband(
mapping = NULL,
data = NULL,
stat = "kmband",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
na.rm = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.



6 geom_kmband

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Aesthetics

geom_kmband understands the following aesthetics (required aesthetics are in bold):

• x The survival/censoring times. This is automatically mapped by stat_kmband()

• y The survival probability estimates. This is automatically mapped by stat_kmband() small-
est level in sort order is assumed to be 0, with a warning

• alpha

• color

• linetype

• linewidth

See Also

The default stat for this geom is stat_kmband(). See that documentation for more options to
control the underlying statistical transformation.



geom_kmticks 7

Examples

library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex), fill =factor(sex))) +
geom_km() + geom_kmband()

geom_kmticks Add tick marks to a Kaplan-Meier survival curve

Description

Adds tickmarks at the times when there are censored observations but no events

Usage

geom_kmticks(
mapping = NULL,
data = NULL,
stat = "kmticks",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
na.rm = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.



8 geom_kmticks

• A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through ....
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.



ggcontinuousexpdist 9

Aesthetics

geom_kmticks understands the following aesthetics (required aesthetics are in bold):

• x The survival/censoring times. This is automatically mapped by stat_kmticks()

• y The survival probability estimates. This is automatically mapped by stat_kmticks()
smallest level in sort order is assumed to be 0, with a warning

• alpha

• color

• linetype

• size

See Also

The default stat for this geom is stat_kmticks see that documentation for more options to control
the underlying statistical transformation.

Examples

library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex), group = factor(sex))) +
geom_km() + geom_kmticks(col="black")

ggcontinuousexpdist Create a continuous exposure fit plot

Description

Produces a logistic fit plot with a facettable exposures/quantiles/distributions in ggplot2

Usage

ggcontinuousexpdist(
data = effICGI,
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
color_fill = "DOSE",
exposure_metrics = c("AUC", "CMAX"),
exposure_metric_split = c("median", "tertile", "quartile", "none"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution = c("distributions", "lineranges", "none"),
dose_plac_value = "Placebo",
xlab = "Exposure Values",



10 ggcontinuousexpdist

ylab = "Response",
mean_obs_byexptile = TRUE,
mean_text_size = 5,
mean_obs_bydose = TRUE,
mean_obs_bydose_plac = FALSE,
N_text_size = 5,
binlimits_text_size = 5,
binlimits_ypos = -Inf,
binlimits_color = "gray70",
dist_position_scaler = 0.2,
dist_offset = 0,
dist_scale = 0.9,
lineranges_ypos = -1,
lineranges_dodge = 1,
lineranges_doselabel = FALSE,
proj_bydose = TRUE,
yproj = TRUE,
yproj_xpos = 0,
yproj_dodge = 0.2,
yaxis_position = c("left", "right"),
facet_formula = NULL,
theme_certara = TRUE,
return_list = FALSE

)

Arguments

data Data to use with multiple endpoints stacked into response (values), Endpoint(endpoint
name)

response name of the column holding the response values

endpoint name of the column holding the name/key of the endpoint default to Endpoint

DOSE name of the column holding the DOSE values default to DOSE

color_fill name of the column to be used for color/fill default to DOSE column
exposure_metrics

name(s) of the column(s) to be stacked into expname exptile and split into
exposure_metric_split

exposure_metric_split

one of "median", "tertile", "quartile", "none"
exposure_metric_soc_value

special exposure code for standard of care default -99
exposure_metric_plac_value

special exposure code for placebo default 0
exposure_distribution

one of distributions, lineranges or none
dose_plac_value

string identifying placebo in DOSE column



ggcontinuousexpdist 11

xlab text to be used as x axis label

ylab text to be used as y axis label
mean_obs_byexptile

observed probability by exptile TRUE/FALSE

mean_text_size mean text size default to 5
mean_obs_bydose

observed mean by dose TRUE/FALSE
mean_obs_bydose_plac

observed probability by placebo dose TRUE/FALSE

N_text_size N by exposure bin text size default to 5
binlimits_text_size

5 binlimits text size

binlimits_ypos binlimits y position default to 0
binlimits_color

binlimits text color default to "gray70"
dist_position_scaler

space occupied by the distribution default to 0.2

dist_offset offset where the distribution position starts default to 0

dist_scale scaling parameter for ggridges default to 0.9
lineranges_ypos

where to put the lineranges -1
lineranges_dodge

lineranges vertical dodge value 1
lineranges_doselabel

TRUE/FALSE

proj_bydose project the probabilities on logistic curve TRUE/FALSE

yproj project the probabilities on y axis TRUE/FALSE

yproj_xpos y projection x position 0

yproj_dodge y projection dodge value 0.2

yaxis_position where to put y axis "left" or "right"

facet_formula facet formula to be use otherwise endpoint ~ expname

theme_certara apply certara colors and format for strips and default colour/fill

return_list What to return if True a list of the datasets and plot is returned instead of only
the plot

Examples

# Example 1
library(ggplot2)
library(patchwork)
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI7))|>
dplyr::filter(!is.na(AUC))



12 ggcontinuousexpdist

effICGI$DOSE <- factor(effICGI$DOSE,
levels=c("0", "600", "1200","1800","2400"),
labels=c("Placebo", "600 mg", "1200 mg","1800 mg","2400 mg"))

effICGI$STUDY <- factor(effICGI$STUDY)
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI7,BRLS)
a <- ggcontinuousexpdist(data = effICGI |> dplyr::filter(Endpoint =="ICGI7"),

response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 1, dist_offset = -1 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="distributions")

b <- ggcontinuousexpdist(data = effICGI |> dplyr::filter(Endpoint =="BRLS"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 4.2, dist_offset = 5 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="distributions",
return_list = FALSE)

(a / b) +
plot_layout(guides = "collect") &
theme(legend.position = "top")

#Example 2
effICGI$SEX <- as.factor(effICGI$SEX)
ggcontinuousexpdist(data = effICGI |>

dplyr::filter(Endpoint =="ICGI7"),
response = "response",
endpoint = "Endpoint",
color_fill = "SEX",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 1, dist_offset = -1 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="lineranges")

## Not run:
#Example 5

## End(Not run)



ggkmrisktable 13

ggkmrisktable Create a Kaplan-Meier plot with risk table

Description

Produces a km plot with a facettable risk table in ggplot2

Usage

ggkmrisktable(
data = lung_long,
time = "time",
status = "DV",
endpoint = "Endpoint",
groupvar1 = "Endpoint",
groupvar2 = "expname",
groupvar3 = "none",
exposure_metrics = c("age", "ph.karno"),
exposure_metric_split = c("median", "tertile", "quartile", "none"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
show_exptile_values = FALSE,
show_exptile_values_pos = c("left", "right"),
show_exptile_values_textsize = 5,
show_exptile_values_order = c("default", "reverse"),
color_fill = "exptile",
linetype = "exptile",
xlab = "Time of follow_up",
ylab = "Overall survival probability",
nrisk_table_plot = TRUE,
nrisk_table_variables = c("n.risk", "pct.risk", "n.event", "cum.n.event", "n.censor"),
nrisk_table_breaktimeby = NULL,
nrisk_table_textsize = 4,
nrisk_position_scaler = 0.2,
nrisk_position_dodge = 0.2,
nrisk_offset = 0,
nrisk_filterout0 = FALSE,
km_logrank_pvalue = FALSE,
km_logrank_pvalue_pos = c("left", "right"),
km_logrank_pvalue_textsize = 5,
km_trans = c("identity", "event", "cumhaz", "cloglog"),
km_ticks = TRUE,
km_band = TRUE,
km_conf_int = 0.95,
km_conf_type = c("log", "plain", "log", "log-log", "logit", "none"),
km_conf_lower = c("usual", "peto", "modified"),
km_median = c("none", "median", "medianci", "table"),



14 ggkmrisktable

km_median_table_pos = c("left", "right"),
km_median_table_order = c("default", "reverse"),
km_yaxis_position = c("left", "right"),
facet_formula = NULL,
facet_ncol = NULL,
facet_strip_position = c("top", "top", "top", "top"),
theme_certara = TRUE,
return_list = FALSE

)

Arguments

data Data to use with multiple endpoints stacked into time, status, endpoint name

time name of the column holding the time to event information default to time

status name of the column holding the event information default to DV

endpoint name of the column holding the name/key of the endpoint default to Endpoint

groupvar1 name of the column to group by, default Endpoint

groupvar2 name of the column to group by in addition to groupvar1, default expname

groupvar3 name of the column to group by in addition to groupvar1 and groupvar2, default
"none"

exposure_metrics

name(s) of the column(s) to be stacked into expname exptile and split into
exposure_metric_split

exposure_metric_split

one of "median", "tertile", "quartile", "none"
exposure_metric_soc_value

special exposure code for standard of care default -99
exposure_metric_plac_value

special exposure code for placebo default 0
show_exptile_values

FALSE
show_exptile_values_pos

"left" or "right"
show_exptile_values_textsize

default to 5
show_exptile_values_order

the order of the entries "default" or "reverse"

color_fill name of the column to be used for color/fill default to exptile

linetype name of the column to be used for linetype default to exptile

xlab text to be used as x axis label

ylab text to be used as y axis label
nrisk_table_plot

TRUE
nrisk_table_variables

one or more from: "n.risk", "pct.risk", "n.event, "cum.n.event, "n.censor"



ggkmrisktable 15

nrisk_table_breaktimeby

NULL
nrisk_table_textsize

4
nrisk_position_scaler

0.2
nrisk_position_dodge

0.2, negative values will reverse the order

nrisk_offset 0
nrisk_filterout0

FALSE
km_logrank_pvalue

FALSE
km_logrank_pvalue_pos

"left" or "right"
km_logrank_pvalue_textsize

pvalue text size default to 5

km_trans one of "identity","event","cumhaz","cloglog"

km_ticks TRUE

km_band TRUE

km_conf_int 0.95

km_conf_type default one of "log", "plain", "log-log", "logit", "none"

km_conf_lower one of "usual", "peto", "modified"

km_median add median survival information one of "none", "median", "medianci", "table"
km_median_table_pos

when table is chosen where to put it "left" or "right
km_median_table_order

when table is chosen the order of the entries "default" or "reverse"
km_yaxis_position

where to put y axis on "left" or "right

facet_formula facet formula to be used otherwise ~ groupvar1 + groupvar2 + groupvar3

facet_ncol NULL if not specified the automatic waiver will be used
facet_strip_position

position in sequence for the variable used in faceting default to c("top","top","top","top")

theme_certara apply certara colors and format for strips and default colour/fill

return_list What to return if True a list of the datasets and plot is returned instead of only
the plot

Examples

library(tidyr)
# Example 1
lung_long <- survival::lung |>
dplyr::mutate(status = ifelse(status==1,0,1)) |>
tidyr::gather(Endpoint,DV,status) |>



16 ggkmrisktable

dplyr::filter(!is.na(ph.karno))|>
dplyr::filter(!is.na(pat.karno))|>
dplyr::filter(!is.na(ph.ecog))

lung_long$ph.ecog <- ifelse(lung_long$ph.ecog>1,2,lung_long$ph.ecog)
lung_long$ph.ecog <- as.factor(lung_long$ph.ecog )
lung_long$ph.ecog <- as.factor(lung_long$ph.ecog )
lung_long$facetdum <- "(all)"

ggkmrisktable(data = lung_long, time= "time", status ="DV",
exposure_metrics =c("age","ph.karno"),
exposure_metric_split = "tertile",
color_fill = "exptile",
linetype = "expname",
groupvar1 = "Endpoint",
groupvar2 = "exptile",
xlab = "Time of follow_up",
ylab ="Overall survival probability",
nrisk_table_variables = c("n.risk","n.event"),
km_median = "medianci",
km_band = FALSE,
nrisk_table_breaktimeby = 200,
facet_ncol = 3)

#Example 2
ggkmrisktable(data = lung_long, time= "time", status ="DV",

exposure_metrics =c("age","ph.karno"),
exposure_metric_split = "quartile",
color_fill = "exptile",
linetype = "none",
groupvar1 = "Endpoint",
groupvar2 = "exptile",
xlab = "Time of follow_up",
ylab ="Overall survival probability",
nrisk_table_variables = c("cum.n.event","pct.risk","n.censor"),
km_median = "medianci",
km_band = TRUE,
km_trans = "event",
show_exptile_values = TRUE,
show_exptile_values_pos = "right",
nrisk_table_breaktimeby = 200,
facet_ncol = 3,
facet_formula = ~expname)

## Not run:
#Example 3
ggkmrisktable(data = lung_long, time = "time", status = "DV",

exposure_metrics =c("ph.karno","pat.karno"),
exposure_metric_split = "median",
color_fill = "exptile",
linetype = "exptile",
groupvar1 = "Endpoint",
groupvar2 = "expname",
xlab = "Time of follow_up",
ylab ="Overall survival probability",
nrisk_table_variables = c("n.event"),



gglogisticexpdist 17

km_trans = "event",
km_median = "table",
km_median_table_pos = "right",
km_logrank_pvalue = TRUE,
km_band = TRUE,
nrisk_table_breaktimeby = 200,
facet_ncol = 3,
facet_formula = ~expname)

#Example 4
ggkmrisktable(data=lung_long,

exposure_metrics = c("ph.karno","age"),
exposure_metric_split = "median",
time = "time",
status ="DV",
color_fill = "ph.ecog",
linetype = "ph.ecog",
groupvar1 = "Endpoint",
groupvar2 = "expname",
groupvar3 = "exptile",
nrisk_filterout0 = FALSE,
nrisk_table_breaktimeby = 200,
km_logrank_pvalue = TRUE,
km_median = "table",
km_median_table_pos = "left",
facet_formula = ~expname+exptile)

#Example 5

ggkmrisktable(data=lung_long,
exposure_metrics = c("ph.karno","age"),
exposure_metric_split = "none",
color_fill = "none",
linetype = "none",

nrisk_table_variables = c("n.risk", "pct.risk", "n.event", "cum.n.event", "n.censor"),
km_median = "table",
nrisk_position_scaler = 0.1
)

## End(Not run)

gglogisticexpdist Create a logistic fit plot

Description

Produces a logistic fit plot with a facettable exposures/quantiles/distributions in ggplot2

Usage

gglogisticexpdist(



18 gglogisticexpdist

data = effICGI,
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
color_fill = "DOSE",
logistic_by_color_fill = FALSE,
exposure_metrics = c("AUC", "CMAX"),
exposure_metric_split = c("median", "tertile", "quartile", "none"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution = c("distributions", "lineranges", "none"),
dose_plac_value = "Placebo",
xlab = "Exposure Values",
ylab = "Probability of Response",
points_alpha = 0.2,
points_show = TRUE,
prob_obs_byexptile = TRUE,
prob_obs_byexptile_group = "none",
prob_text_size = 5,
prob_obs_bydose = TRUE,
prob_obs_bydose_plac = FALSE,
Nresp_Ntot = TRUE,
Nresp_Ntot_ypos = c("with percentages", "top"),
Nresp_Ntot_sep = "/",
binlimits_show = TRUE,
binlimits_text_size = 5,
binlimits_ypos = 0,
binlimits_color = "gray70",
dist_position_scaler = 0.2,
dist_offset = 0,
dist_scale = 0.9,
lineranges_ypos = 0.2,
lineranges_dodge = 0.15,
lineranges_doselabel = FALSE,
proj_bydose = TRUE,
yproj = TRUE,
yproj_xpos = 0,
yproj_dodge = 0.2,
yaxis_position = c("left", "right"),
facet_formula = NULL,
theme_certara = TRUE,
return_list = FALSE

)

Arguments

data Data to use with multiple endpoints stacked into response (values 0/1), End-
point(endpoint name)



gglogisticexpdist 19

response name of the column holding the response values 0/1

endpoint name of the column holding the name/key of the endpoint default to Endpoint

DOSE name of the column holding the DOSE values default to DOSE

color_fill name of the column to be used for color/fill default to DOSE column
logistic_by_color_fill

logistic fit split by color ? default FALSE
exposure_metrics

name(s) of the column(s) to be stacked into expname exptile and split into
exposure_metric_split

exposure_metric_split

one of "median", "tertile", "quartile", "none"
exposure_metric_soc_value

special exposure code for standard of care default -99
exposure_metric_plac_value

special exposure code for placebo default 0
exposure_distribution

one of distributions, lineranges or none
dose_plac_value

string identifying placebo in DOSE column

xlab text to be used as x axis label

ylab text to be used as y axis label

points_alpha alpha transparency for points

points_show show the 0/1 observations TRUE/FALSE
prob_obs_byexptile

observed probability by exptile TRUE/FALSE
prob_obs_byexptile_group

additional grouping for exptile probabilities default none

prob_text_size probability text size default to 5
prob_obs_bydose

observed probability by dose TRUE/FALSE
prob_obs_bydose_plac

observed probability by placebo dose TRUE/FALSE

Nresp_Ntot show N responders/Ntotal ? TRUE/FALSE
Nresp_Ntot_ypos

y position for N responders/Ntotal two text elements the first for by exptile and
the second for by dose/color options include with percentages top bottom

Nresp_Ntot_sep character string to separat N responders/ Ntotal default /

binlimits_show show the binlimits vertical lines TRUE/FALSE
binlimits_text_size

5 binlimits text size

binlimits_ypos binlimits y position default to 0
binlimits_color

binlimits text color default to "gray70"



20 gglogisticexpdist

dist_position_scaler

space occupied by the distribution default to 0.2

dist_offset offset where the distribution position starts default to 0

dist_scale scaling parameter for ggridges default to 0.9
lineranges_ypos

where to put the lineranges -1
lineranges_dodge

lineranges vertical dodge value 1
lineranges_doselabel

TRUE/FALSE

proj_bydose project the probabilities on logistic curve TRUE/FALSE

yproj project the probabilities on y axis TRUE/FALSE

yproj_xpos y projection x position 0

yproj_dodge y projection dodge value 0.2

yaxis_position where to put y axis "left" or "right"

facet_formula facet formula to be use otherwise endpoint ~ expname

theme_certara apply certara colors and format for strips and default colour/fill

return_list What to return if True a list of the datasets and plot is returned instead of only
the plot

Examples

# Example 1
library(ggplot2)
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,

levels=c("0", "600", "1200","1800","2400"),
labels=c("Placebo", "600 mg", "1200 mg","1800 mg","2400 mg"))

effICGI$STUDY <- factor(effICGI$STUDY)
effICGI$ICGI2 <- effICGI$ICGI
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI,ICGI2)
gglogisticexpdist(data = effICGI |>

dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution ="distributions",
yproj_xpos = -15,
yproj_dodge = 10,
dist_position_scaler = 0.1,
dist_offset = -0.1,
Nresp_Ntot_ypos = c("with percentages","bottom"),



gglogisticexpdist 21

prob_obs_bydose_plac = FALSE,
prob_obs_byexptile_group = "none",
binlimits_ypos = -0.08,
points_alpha= 1)

# Example 2
gglogisticexpdist(data = effICGI |>

dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("CMAX"),
exposure_metric_split = c("tertile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution ="lineranges",
lineranges_ypos = -0.2,
lineranges_dodge = 0.2,
prob_obs_bydose = TRUE,
yproj_xpos = -1,
yproj_dodge = 2,
dist_position_scaler = 0.1)

## Not run:
#' # Example 3
library(ggh4x)
gglogisticexpdist(data = effICGI |>

dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="distributions",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 0.15)+

facet_grid2(Endpoint~expname+DOSE2,scales="free",
margins = "DOSE2",strip = strip_nested())

# Example 4
effICGI$SEX <- as.factor(effICGI$SEX)
gglogisticexpdist(data = effICGI |>

dplyr::filter(Endpoint=="ICGI"),
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
color_fill = "SEX",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="distributions",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
lineranges_ypos = -0.2,



22 gglogisticexpdist

yproj_xpos = -10,
yproj_dodge = 20,
prob_text_size = 6,
binlimits_text_size = 6,
Nresp_Ntot = TRUE,
dist_position_scaler = 0.15)+
ggplot2::scale_x_continuous(breaks = seq(0,350,50),
expand = ggplot2::expansion(add= c(0,0),mult=c(0,0)))+
ggplot2::coord_cartesian(xlim = c(-30,355))+

ggplot2::facet_grid(Endpoint~expname+color_fill2, margins ="color_fill2" )

#Example 4b
effICGI$SEX <- as.factor(effICGI$SEX)
gglogisticexpdist(data = effICGI |>
dplyr::filter(Endpoint =="ICGI"),

response = "response",
endpoint = "Endpoint",
color_fill = "SEX",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 1, dist_offset = -1 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="lineranges")

#Example 5
gglogisticexpdist(data = effICGI |> dplyr::filter(Endpoint=="ICGI"),

response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="distributions",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 0.15)+
facet_grid(Endpoint~expname+exptile,scales="free",
margins = "exptile")

#Example 6
a <- gglogisticexpdist(data = effICGI, #

response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",yproj_dodge = 36,
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_distribution ="lineranges",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0) +

facet_grid(Endpoint~expname,switch = "both")
b <- gglogisticexpdist(data = effICGI, #

response = "response",



gglogisticexpdist 23

endpoint = "Endpoint",
DOSE = "DOSE",yproj_dodge = 2,
exposure_metrics = c("CMAX"),
exposure_metric_split = c("quartile"),
exposure_distribution ="lineranges",
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
yaxis_position = "right")+

facet_grid(Endpoint~expname,switch = "x")+
theme(strip.text.y.right = element_blank(),

strip.background.y = element_blank())
library(patchwork)
(a | b ) +

plot_layout(guides = "collect", axes = "collect_x")&
theme(legend.position = "top")

#Example 7
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,

levels=c("0", "600", "1200","1800","2400"),
labels=c("Placebo", "600 mg", "1200 mg","1800 mg","2400 mg"))

effICGI$STUDY <- factor(effICGI$STUDY)
effICGI$ICGI2 <- ifelse(effICGI$ICGI7 < 4,1,0)
effICGI$ICGI3 <- ifelse(effICGI$ICGI7 < 5,1,0)

effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI,ICGI2,ICGI3)
effICGI$endpointcol2 <- effICGI$Endpoint
gglogisticexpdist(data = effICGI,

response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("median"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
color_fill = "endpointcol2",
prob_obs_byexptile = FALSE,
logistic_by_color_fill = TRUE,
Nresp_Ntot = TRUE,
exposure_distribution ="distributions",
lineranges_doselabel = TRUE,
prob_obs_bydose = TRUE,
proj_bydose = FALSE,
yproj = FALSE,
dist_position_scaler = 0.1,
dist_offset = -0.1)+

facet_grid(expname~.,scales="free_x")

## End(Not run)



24 logistic_data

logistic_data Simulated Exposure Response Data

Description

A dataset containing data suitable for logistic regression

Usage

logistic_data

Format

A data frame with 600 rows and 10 variables

STUDY Study identifier

ID Subject Identifier

DOSE Dose, in mg

GBDS Dose, in alternative salt

SEX Sex of the subject

AGE age of the subject, in years

WT weight of the subject, in kg

RACE Race of the subject

CRCL Creatinine clearance

BRLS RLS score

PRLS RLS score

AUC Area under the curve exposure

CMAX Maximun concentration exposure

ICGI response 0/1

ICGI7 response 1 to 7

Source

inspired from a real data submission

Examples

logistic_data



run_ggquickeda 25

run_ggquickeda Run the ggquickeda application

Description

Run the ggquickeda application.

Usage

run_ggquickeda(data = NULL, ...)

Arguments

data The initial data.frame to load into the application.

... Additional arguments for bookmarking

Examples

if (interactive()) {
run_ggquickeda()

}

sample_data Simulated Pharmacokinetic Concentration Data

Description

A dataset containing concentration-time data with the given dose and some subject characteristics
to help in the app exploration.

Usage

sample_data

Format

A data frame with 600 rows and 10 variables

ID Subject Identifier, an integer from 1 to 150

Time Time of dose given or drug sample measured, in hours

Amt dose given at the corresponding Time, in milligrams

Conc drug concentrations in the plasma sample, in mg/L

Age age of the subject, in years

Weight weight of the subject, in kg



26 stat_km

Gender Sex of the subject, a factor with Female and Male levels

Race Race of the subject, a factor with Asian, Black, Caucasian, Hispanic and Other levels

Dose dose group of the subject, in milligrams

AGECAT age category of the subject, a variable cutting Age into two values 0/1

Source

"sd_oral_richpk" from ’PKPDmisc’ R package with an additional AGECAT variable

Examples

sample_data

stat_km Adds a Kaplan Meier Estimate of Survival

Description

Adds a Kaplan Meier Estimate of Survival

Usage

stat_km(
mapping = NULL,
data = NULL,
geom = "km",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
trans = scales::identity_trans(),
firstx = 0,
firsty = 1,
type = "kaplan-meier",
start.time = 0,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.



stat_km 27

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

trans Transformation to apply to the survival probabilities. Defaults to "identity".
Other options include "event", "cumhaz", "cloglog", or define your own using
trans_new.

firstx, firsty the starting point for the survival curves. By default, the plot program obeys
tradition by having the plot start at (0,1).

type an older argument that combined stype and ctype, now deprecated. Legal val-
ues were "kaplan-meier" which is equivalent to stype=1, ctype=1, "fleming-
harrington" which is equivalent to stype=2, ctype=1, and "fh2" which is equiva-
lent to stype=2, ctype=2.



28 stat_km

start.time numeric value specifying a time to start calculating survival information. The
resulting curve is the survival conditional on surviving to start.time.

... Other arguments passed to survfit.formula

Details

This stat is for computing the confidence intervals for the Kaplan-Meier survival estimate for right-
censored data. It requires the aesthetic mapping x for the observation times and status which
indicates the event status, 0=alive, 1=dead or 1/2 (2=death). Logical status is not supported.

Value

a data.frame with additional columns:

x x in data

y Kaplan-Meier Survival Estimate at x

Aesthetics

stat_km understands the following aesthetics (required aesthetics are in bold):

• time The survival times

• status The censoring indicator, see Surv for more information.

• alpha

• color

• linetype

• size

Examples

library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) +
stat_km()

## Examples illustrating the options passed to survfit.formula

p1 <- ggplot(df, aes(time = time, status = status))
p1 + stat_km()
p1 + stat_km(trans = "cumhaz")
# for cloglog plots also log transform the time axis
p1 + stat_km(trans = "cloglog") + scale_x_log10()
p1 + stat_km(type = "fleming-harrington")
p1 + stat_km(start.time = 5)



stat_kmband 29

stat_kmband Adds confidence bands to a Kaplan Meier Estimate of Survival

Description

Adds confidence bands to a Kaplan Meier Estimate of Survival

Usage

stat_kmband(
mapping = NULL,
data = NULL,
geom = "kmband",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
trans = "identity",
firstx = 0,
firsty = 1,
type = "kaplan-meier",
error = "greenwood",
conf.type = "log",
conf.lower = "usual",
start.time = 0,
conf.int = 0.95,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:



30 stat_kmband

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

trans Transformation to apply to the survival probabilities. Defaults to "identity".
Other options include "event", "cumhaz", "cloglog", or define your own using
scales::trans_new().

firstx, firsty the starting point for the survival curves. By default, the plot program obeys
tradition by having the plot start at (0,1).

type an older argument that combined stype and ctype, now deprecated. Legal val-
ues were "kaplan-meier" which is equivalent to stype=1, ctype=1, "fleming-
harrington" which is equivalent to stype=2, ctype=1, and "fh2" which is equiva-
lent to stype=2, ctype=2.

error either the string "greenwood" for the Greenwood formula or "tsiatis" for the Tsi-
atis formula, (only the first character is necessary). The default is "greenwood".

conf.type One of "none", "plain", "log" (the default), "log-log" or "logit".
conf.lower a character string to specify modified lower limits to the curve, the upper limit re-

mains unchanged. Possible values are "usual" (unmodified), "peto", and "mod-
ified". The modified lower limit is based on an "effective n" argument. The
confidence bands will agree with the usual calculation at each death time, but
unlike the usual bands the confidence interval becomes wider at each censored
observation. The extra width is obtained by multiplying the usual variance by a
factor m/n, where n is the number currently at risk and m is the number at risk
at the last death time. (The bands thus agree with the un-modified bands at each
death time.) This is especially useful for survival curves with a long flat tail.
The Peto lower limit is based on the same "effective n" argument as the mod-
ified limit, but also replaces the usual Greenwood variance term with a simple
approximation. It is known to be conservative.



stat_kmband 31

start.time numeric value specifying a time to start calculating survival information. The
resulting curve is the survival conditional on surviving to start.time.

conf.int the level for a two-sided confidence interval on the survival curve(s). Default is
0.95.

... Other arguments passed to survfit.formula

Details

This stat is for computing the confidence intervals for the Kaplan-Meier survival estimate for right-
censored data. It requires the aesthetic mapping x for the observation times and status which
indicates the event status, 0=alive, 1=dead or 1/2 (2=death). Logical status is not supported.

Value

a data.frame with additional columns:

x x in data

ymin Lower confidence limit of KM curve

ymax Upper confidence limit of KM curve

Aesthetics

stat_kmband understands the following aesthetics (required aesthetics are in bold):

• time The survival times

• status The censoring indicator, see Surv for more information.

• alpha

• color

• linetype

• linewidth

Examples

library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) +
stat_km()

## Examples illustrating the options passed to survfit.formula

p1 <- ggplot(df, aes(time = time, status = status))
p1 + stat_km() + stat_kmband(conf.int = .99)
p1 + stat_kmband(error = "greenwood",fill="red",alpha=0.2) +
stat_kmband(error = "tsiatis",fill="blue",alpha=0.2)+ stat_km()

p1 + stat_km() + stat_kmband(conf.type = "log-log")+ stat_kmband(conf.type = "log")



32 stat_kmticks

stat_kmticks Adds tick marks to a Kaplan Meier Estimate of Survival

Description

Adds tick marks to a Kaplan Meier Estimate of Survival

Usage

stat_kmticks(
mapping = NULL,
data = NULL,
geom = "kmticks",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
trans,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.



stat_kmticks 33

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

trans Transformation to apply to the survival probabilities. Defaults to "identity".
Other options include "event", "cumhaz", "cloglog", or define your own using
trans_new.

... Other arguments passed to survfit.formula

Details

This stat is for computing the tick marks for a Kaplan-Meier survival estimate for right-censored
data. The tick marks will appear at each censoring time which is also not a death time, which is the
default for plot.survfit. It requires the aesthetic mapping x for the observation times and status
which indicates the event status, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death).

Value

a data.frame with additional columns:

x x in data

y Kaplan-Meier Survival Estimate at x

Aesthetics

stat_kmticks understands the following aesthetics (required aesthetics are in bold):

• time The survival times

• status The censoring indicator, see Surv for more information.

• alpha

• color

• linetype

• size



34 stat_kmticks

See Also

stat_km; stat_kmband

Examples

library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) +
stat_km() + stat_kmticks()



Index

∗ datasets
logistic_data, 24
sample_data, 25

aes(), 2, 5, 7, 26, 29, 32

borders(), 3, 6, 8, 27, 30, 33

fortify(), 2, 5, 7, 27, 29, 32

geom_km, 2
geom_kmband, 4
geom_kmticks, 7
ggcontinuousexpdist, 9
ggkmrisktable, 13
gglogisticexpdist, 17
ggplot(), 2, 5, 7, 27, 29, 32

key glyphs, 4, 6, 8

layer geom, 27, 30, 32
layer position, 3, 5, 8, 27, 30, 33
layer stat, 3, 5, 8
layer(), 3, 4, 6, 8
logistic_data, 24

plot.survfit, 33

run_ggquickeda, 25

sample_data, 25
scales::trans_new(), 30
stat_km, 26, 34
stat_km(), 4
stat_kmband, 29, 34
stat_kmband(), 6
stat_kmticks, 9, 32
stat_kmticks(), 9
Surv, 28, 31, 33
survfit.formula, 28, 31, 33

trans_new, 27, 33

35


	geom_km
	geom_kmband
	geom_kmticks
	ggcontinuousexpdist
	ggkmrisktable
	gglogisticexpdist
	logistic_data
	run_ggquickeda
	sample_data
	stat_km
	stat_kmband
	stat_kmticks
	Index

