Package: ggquickeda (via r-universe)

September 12, 2024

Title Quickly Explore Your Data Using 'ggplot2' and 'table1' Summary Tables

Version 0.3.1.9000

Description Quickly and easily perform exploratory data analysis by uploading your data as a 'csv' file. Start generating insights using 'ggplot2' plots and 'table1' tables with descriptive stats, all using an easy-to-use point and click 'Shiny' interface.

URL https://github.com/smouksassi/ggquickeda,

https://smouksassi.github.io/ggquickeda/

BugReports https://github.com/smouksassi/ggquickeda/issues

Depends R (>= 4.1.0)

Imports colourpicker, dplyr, data.table, DT, Formula, GGally (>= 2.1.0), ggbeeswarm, ggh4x, ggplot2 (>= 3.4.0), ggpmisc, ggrepel (>= 0.7.0), ggpubr, ggstance, glue, gridExtra, Hmisc, markdown, methods, plotly, quantreg, rlang, scales, shiny (>= 1.0.4), shinyjs (>= 1.1), shinyjqui, stringr, survival, survminer, tidyr, table1 (>= 1.4.2), zoo, shinyFiles, RPostgres, forcats, ggridges, rms, tibble, patchwork (>= 1.2.0)

Suggests knitr, rmarkdown

License MIT + file LICENSE

SystemRequirements pandoc with https support

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

Roxygen list(markdown = TRUE)

Repository https://smouksassi.r-universe.dev

RemoteUrl https://github.com/smouksassi/ggquickeda

RemoteRef HEAD

RemoteSha e004748cd639f3110472bc7cb1bfef916626ebb5

Contents

geom_km	2
geom_kmband	4
geom_kmticks	7
ggcontinuousexpdist	9
ggkmrisktable	13
gglogisticexpdist	17
logistic_data	24
run_ggquickeda	25
sample_data	
stat_km	26
stat_kmband	29
stat_kmticks	32
	35

Index

```
geom_km
```

Add a Kaplan-Meier survival curve

Description

Add a Kaplan-Meier survival curve

Usage

```
geom_km(
  mapping = NULL,
  data = NULL,
  stat = "km",
  position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  na.rm = TRUE,
  ...
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

stat	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)). The statistical transformation to use on the data for this layer. When using a $geom_*()$ function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts
	the following:A Stat ggproto subclass, for example StatCount.A string naming the stat. To give the stat as a string, strip the function name
	of the stat_ prefix. For example, to use stat_count(), give the stat as "count".For more information and other ways to specify the stat, see the layer stat
	documentation.
position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
	Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can <i>not</i> be passed through Unknown arguments that are not part of the 4 categories below are ignored.
	• Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
	• When constructing a layer using a stat_*() function, the argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

Aesthetics

geom_km understands the following aesthetics (required aesthetics are in bold):

- x The survival/censoring times. This is automatically mapped by stat_km()
- y The survival probability estimates. This is automatically mapped by stat_km() smallest level in sort order is assumed to be 0, with a warning.
- alpha
- color
- linetype
- size

See Also

The default stat for this geom is stat_km() see that documentation for more options to control the underlying statistical transformation.

Examples

```
library(ggplot2)
set.seed(123)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) + geom_km()</pre>
```

geom_kmband

Add confidence bands to a Kaplan-Meier survival curve

Description

Add confidence bands to a Kaplan-Meier survival curve

geom_kmband

Usage

```
geom_kmband(
  mapping = NULL,
  data = NULL,
  stat = "kmband",
  position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  na.rm = TRUE,
  ...
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
stat	The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:
	 A Stat ggproto subclass, for example StatCount.
	• A string naming the stat. To give the stat as a string, strip the function name of the stat_ prefix. For example, to use stat_count(), give the stat as "count".
	• For more information and other ways to specify the stat, see the layer stat documentation.
position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.

show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
	Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can <i>not</i> be passed through Unknown arguments that are not part of the 4 categories below are ignored.
	 Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data. When constructing a layer using a stat_*() function, the argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept. Inversely, when constructing a layer using a geom_*() function, the
	argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
	• The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.
Aesthetics	

geom_kmband understands the following aesthetics (required aesthetics are in bold):

- x The survival/censoring times. This is automatically mapped by stat_kmband()
- y The survival probability estimates. This is automatically mapped by stat_kmband() smallest level in sort order is assumed to be 0, with a warning
- alpha
- color
- linetype
- linewidth

See Also

The default stat for this geom is stat_kmband(). See that documentation for more options to control the underlying statistical transformation.

geom_kmticks

Examples

```
library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex), fill = factor(sex))) +
geom_km() + geom_kmband()</pre>
```

- geom_kmticks
- Add tick marks to a Kaplan-Meier survival curve

Description

Adds tickmarks at the times when there are censored observations but no events

Usage

```
geom_kmticks(
  mapping = NULL,
  data = NULL,
  stat = "kmticks",
  position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  na.rm = TRUE,
  ...
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
stat	The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

• A Stat ggproto subclass, for example StatCount.

	• A string naming the stat. To give the stat as a string, strip the function name of the stat_ prefix. For example, to use stat_count(), give the stat as "count".
	• For more information and other ways to specify the stat, see the layer stat documentation.
position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
	Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can <i>not</i> be passed through Unknown arguments that are not part of the 4 categories below are ignored.
	• Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
	• When constructing a layer using a stat_*() function, the argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
	• Inversely, when constructing a layer using a geom_*() function, the argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
	• The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

ggcontinuousexpdist

Aesthetics

geom_kmticks understands the following aesthetics (required aesthetics are in bold):

- x The survival/censoring times. This is automatically mapped by stat_kmticks()
- y The survival probability estimates. This is automatically mapped by stat_kmticks() smallest level in sort order is assumed to be 0, with a warning
- alpha
- color
- linetype
- size

See Also

The default stat for this geom is stat_kmticks see that documentation for more options to control the underlying statistical transformation.

Examples

```
library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex), group = factor(sex))) +
geom_km() + geom_kmticks(col="black")</pre>
```

ggcontinuousexpdist Create a continuous exposure fit plot

Description

Produces a logistic fit plot with a facettable exposures/quantiles/distributions in ggplot2

Usage

```
ggcontinuousexpdist(
  data = effICGI,
  response = "response",
  endpoint = "Endpoint",
  DOSE = "DOSE",
  color_fill = "DOSE",
  exposure_metrics = c("AUC", "CMAX"),
  exposure_metric_split = c("median", "tertile", "quartile", "none"),
  exposure_metric_soc_value = -99,
  exposure_metric_plac_value = 0,
  exposure_distribution = c("distributions", "lineranges", "none"),
  dose_plac_value = "Placebo",
  xlab = "Exposure Values",
```

```
ylab = "Response",
 mean_obs_byexptile = TRUE,
 mean_text_size = 5,
 mean_obs_bydose = TRUE,
 mean_obs_bydose_plac = FALSE,
 N_text_size = 5,
 binlimits_text_size = 5,
 binlimits_ypos = -Inf,
 binlimits_color = "gray70",
 dist_position_scaler = 0.2,
 dist_offset = 0,
 dist_scale = 0.9,
 lineranges_ypos = -1,
  lineranges_dodge = 1,
 lineranges_doselabel = FALSE,
 proj_bydose = TRUE,
 yproj = TRUE,
 yproj_xpos = 0,
 yproj_dodge = 0.2,
 yaxis_position = c("left", "right"),
 facet_formula = NULL,
 theme_certara = TRUE,
 return_list = FALSE
)
```

Arguments

data	Data to use with multiple endpoints stacked into response (values), Endpoint(endpoint name)	
response	name of the column holding the response values	
endpoint	name of the column holding the name/key of the endpoint default to Endpoint	
DOSE	name of the column holding the DOSE values default to DOSE	
color_fill	name of the column to be used for color/fill default to DOSE column	
exposure_metri	cs	
	<pre>name(s) of the column(s) to be stacked into expname exptile and split into exposure_metric_split</pre>	
exposure_metric_split		
	one of "median", "tertile", "quartile", "none"	
exposure_metric_soc_value		
	special exposure code for standard of care default -99	
exposure_metric_plac_value		
	special exposure code for placebo default 0	
exposure_distribution		
	one of distributions, lineranges or none	
dose_plac_value		
	string identifying placebo in DOSE column	

10

text to be used as x axis label xlab ylab text to be used as y axis label mean_obs_byexptile observed probability by exptile TRUE/FALSE mean_text_size mean text size default to 5 mean_obs_bydose observed mean by dose TRUE/FALSE mean_obs_bydose_plac observed probability by placebo dose TRUE/FALSE N_text_size N by exposure bin text size default to 5 binlimits_text_size 5 binlimits text size binlimits_ypos binlimits y position default to 0 binlimits_color binlimits text color default to "gray70" dist_position_scaler space occupied by the distribution default to 0.2 dist_offset offset where the distribution position starts default to 0 dist_scale scaling parameter for ggridges default to 0.9 lineranges_ypos where to put the lineranges -1 lineranges_dodge lineranges vertical dodge value 1 lineranges_doselabel TRUE/FALSE project the probabilities on logistic curve TRUE/FALSE proj_bydose project the probabilities on y axis TRUE/FALSE yproj yproj_xpos y projection x position 0 y projection dodge value 0.2 yproj_dodge yaxis_position where to put y axis "left" or "right" facet_formula facet formula to be use otherwise endpoint ~ expname theme_certara apply certara colors and format for strips and default colour/fill return_list What to return if True a list of the datasets and plot is returned instead of only the plot

Examples

```
# Example 1
library(ggplot2)
library(patchwork)
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI7))|>
dplyr::filter(!is.na(AUC))
```

```
effICGI$DOSE <- factor(effICGI$DOSE,</pre>
                      levels=c("0", "600", "1200", "1800", "2400"),
                      labels=c("Placebo", "600 mg", "1200 mg", "1800 mg", "2400 mg"))
effICGI$STUDY <- factor(effICGI$STUDY)</pre>
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI7,BRLS)</pre>
a <- ggcontinuousexpdist(data = effICGI |> dplyr::filter(Endpoint =="ICGI7"),
                 response = "response",
                 endpoint = "Endpoint",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 dist_position_scaler = 1, dist_offset = -1 ,
                 yproj_xpos = -20,
                 yproj_dodge = 20 ,
                 exposure_distribution ="distributions")
b <- ggcontinuousexpdist(data = effICGI |> dplyr::filter(Endpoint =="BRLS"),
                 response = "response",
                 endpoint = "Endpoint",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 dist_position_scaler = 4.2, dist_offset = 5 ,
                 yproj_xpos = -20,
                 yproj_dodge = 20 ,
                 exposure_distribution ="distributions",
                 return_list = FALSE)
(a / b) +
plot_layout(guides = "collect") &
theme(legend.position = "top")
#Example 2
effICGI$SEX <- as.factor(effICGI$SEX)</pre>
ggcontinuousexpdist(data = effICGI |>
 dplyr::filter(Endpoint =="ICGI7"),
                 response = "response",
                 endpoint = "Endpoint",
                 color_fill = "SEX",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 dist_position_scaler = 1, dist_offset = -1 ,
                 yproj_xpos = -20,
                 yproj_dodge = 20 ,
                 exposure_distribution ="lineranges")
## Not run:
#Example 5
```

End(Not run)

ggkmrisktable

Description

Produces a km plot with a facettable risk table in ggplot2

Usage

```
ggkmrisktable(
  data = lung_long,
  time = "time",
  status = "DV",
  endpoint = "Endpoint",
  groupvar1 = "Endpoint",
  groupvar2 = "expname",
  groupvar3 = "none",
  exposure_metrics = c("age", "ph.karno"),
  exposure_metric_split = c("median", "tertile", "quartile", "none"),
  exposure_metric_soc_value = -99,
  exposure_metric_plac_value = 0,
  show_exptile_values = FALSE,
  show_exptile_values_pos = c("left", "right"),
  show_exptile_values_textsize = 5,
  show_exptile_values_order = c("default", "reverse"),
  color_fill = "exptile",
  linetype = "exptile",
  xlab = "Time of follow_up",
 ylab = "Overall survival probability",
  nrisk_table_plot = TRUE,
 nrisk_table_variables = c("n.risk", "pct.risk", "n.event", "cum.n.event", "n.censor"),
  nrisk_table_breaktimeby = NULL,
  nrisk_table_textsize = 4,
  nrisk_position_scaler = 0.2,
  nrisk_position_dodge = 0.2,
  nrisk_offset = 0,
  nrisk_filterout0 = FALSE,
  km_logrank_pvalue = FALSE,
  km_logrank_pvalue_pos = c("left", "right"),
  km_logrank_pvalue_textsize = 5,
  km_trans = c("identity", "event", "cumhaz", "cloglog"),
  km_ticks = TRUE,
  km_band = TRUE,
  km_conf_int = 0.95,
  km_conf_type = c("log", "plain", "log", "log-log", "logit", "none"),
  km_conf_lower = c("usual", "peto", "modified"),
  km_median = c("none", "median", "medianci", "table"),
```

```
km_median_table_pos = c("left", "right"),
km_median_table_order = c("default", "reverse"),
km_yaxis_position = c("left", "right"),
facet_formula = NULL,
facet_ncol = NULL,
facet_strip_position = c("top", "top", "top", "top"),
theme_certara = TRUE,
return_list = FALSE
)
```

Arguments

data	Data to use with multiple endpoints stacked into time, status, endpoint name	
time	name of the column holding the time to event information default to time	
status	name of the column holding the event information default to DV	
endpoint	name of the column holding the name/key of the endpoint default to Endpoint	
groupvar1	name of the column to group by, default Endpoint	
groupvar2	name of the column to group by in addition to groupvar1, default expname	
groupvar3	name of the column to group by in addition to groupvar1 and groupvar2, default "none"	
exposure_metri		
	<pre>name(s) of the column(s) to be stacked into expname exptile and split into exposure_metric_split</pre>	
exposure_metri	c_split	
	one of "median", "tertile", "quartile", "none"	
exposure_metri		
	special exposure code for standard of care default -99	
exposure_metri	•	
-h	special exposure code for placebo default 0	
show_exptile_values FALSE		
FALSE show_exptile_values_pos		
"left" or "right"		
show_exptile_values_textsize		
	default to 5	
show_exptile_v		
	the order of the entries "default" or "reverse"	
color_fill	name of the column to be used for color/fill default to exptile	
linetype	name of the column to be used for linetype default to exptile	
xlab	text to be used as x axis label	
ylab	text to be used as y axis label	
nrisk_table_plot		
	TRUE	
nrisk_table_va		
	one or more from: "n.risk", "pct.risk", "n.event, "cum.n.event, "n.censor"	

14

```
nrisk_table_breaktimeby
                  NULL
nrisk_table_textsize
                  4
nrisk_position_scaler
                  0.2
nrisk_position_dodge
                  0.2, negative values will reverse the order
nrisk_offset
                  0
nrisk_filterout0
                  FALSE
km_logrank_pvalue
                  FALSE
km_logrank_pvalue_pos
                  "left" or "right"
km_logrank_pvalue_textsize
                  pvalue text size default to 5
km_trans
                  one of "identity", "event", "cumhaz", "cloglog"
km_ticks
                  TRUE
                  TRUE
km_band
km_conf_int
                  0.95
                  default one of "log", "plain", "log-log", "logit", "none"
km_conf_type
km_conf_lower
                  one of "usual", "peto", "modified"
km median
                  add median survival information one of "none", "median", "medianci", "table"
km_median_table_pos
                  when table is chosen where to put it "left" or "right
km_median_table_order
                  when table is chosen the order of the entries "default" or "reverse"
km_yaxis_position
                  where to put y axis on "left" or "right
facet_formula
                  facet formula to be used otherwise ~ groupvar1 + groupvar2 + groupvar3
facet_ncol
                  NULL if not specified the automatic waiver will be used
facet_strip_position
                  position in sequence for the variable used in faceting default to c("top", "top", "top", "top")
theme_certara
                  apply certara colors and format for strips and default colour/fill
return_list
                  What to return if True a list of the datasets and plot is returned instead of only
                  the plot
```

Examples

```
library(tidyr)
# Example 1
lung_long <- survival::lung |>
dplyr::mutate(status = ifelse(status==1,0,1)) |>
tidyr::gather(Endpoint,DV,status) |>
```

```
dplyr::filter(!is.na(ph.karno))|>
 dplyr::filter(!is.na(pat.karno))|>
 dplyr::filter(!is.na(ph.ecog))
lung_long$ph.ecog <- ifelse(lung_long$ph.ecog>1,2,lung_long$ph.ecog)
lung_long$ph.ecog <- as.factor(lung_long$ph.ecog )</pre>
lung_long$ph.ecog <- as.factor(lung_long$ph.ecog )</pre>
lung_long$facetdum <- "(all)"</pre>
ggkmrisktable(data = lung_long, time= "time", status ="DV",
             exposure_metrics =c("age","ph.karno"),
             exposure_metric_split = "tertile",
             color_fill = "exptile",
             linetype = "expname",
             groupvar1 = "Endpoint",
             groupvar2 = "exptile",
             xlab = "Time of follow_up",
             ylab ="Overall survival probability",
             nrisk_table_variables = c("n.risk","n.event"),
             km_median = "medianci",
             km_band = FALSE,
             nrisk_table_breaktimeby = 200,
             facet_ncol = 3)
#Example 2
ggkmrisktable(data = lung_long, time= "time", status ="DV",
             exposure_metrics =c("age", "ph.karno"),
             exposure_metric_split = "quartile",
             color_fill = "exptile",
             linetype = "none",
             groupvar1 = "Endpoint",
             groupvar2 = "exptile",
             xlab = "Time of follow_up",
             ylab ="Overall survival probability",
             nrisk_table_variables = c("cum.n.event","pct.risk","n.censor"),
             km_median = "medianci",
             km_band = TRUE,
             km_trans = "event",
             show_exptile_values = TRUE,
             show_exptile_values_pos = "right",
             nrisk_table_breaktimeby = 200,
             facet_ncol = 3,
             facet_formula = ~expname)
## Not run:
#Example 3
ggkmrisktable(data = lung_long, time = "time", status = "DV",
             exposure_metrics =c("ph.karno","pat.karno"),
             exposure_metric_split = "median",
             color_fill = "exptile",
             linetype = "exptile",
             groupvar1 = "Endpoint",
             groupvar2 = "expname",
             xlab = "Time of follow_up",
             ylab ="Overall survival probability",
             nrisk_table_variables = c("n.event"),
```

16

```
km_trans = "event",
             km_median = "table",
             km_median_table_pos = "right",
             km_logrank_pvalue = TRUE,
             km_band = TRUE,
             nrisk_table_breaktimeby = 200,
             facet_ncol = 3,
             facet_formula = ~expname)
#Example 4
ggkmrisktable(data=lung_long,
             exposure_metrics = c("ph.karno","age"),
             exposure_metric_split = "median",
             time = "time",
             status ="DV",
             color_fill = "ph.ecog",
             linetype = "ph.ecog",
             groupvar1 = "Endpoint"
             groupvar2 = "expname",
             groupvar3 = "exptile",
             nrisk_filterout0 = FALSE,
             nrisk_table_breaktimeby = 200,
             km_logrank_pvalue = TRUE,
             km_median = "table",
             km_median_table_pos = "left",
             facet_formula = ~expname+exptile)
#Example 5
ggkmrisktable(data=lung_long,
             exposure_metrics = c("ph.karno","age"),
             exposure_metric_split = "none",
              color_fill = "none",
             linetype = "none",
        nrisk_table_variables = c("n.risk", "pct.risk", "n.event", "cum.n.event", "n.censor"),
              km_median = "table",
              nrisk_position_scaler = 0.1
             )
```

End(Not run)

gglogisticexpdist Create a logistic fit plot

Description

Produces a logistic fit plot with a facettable exposures/quantiles/distributions in ggplot2

Usage

gglogisticexpdist(

```
data = effICGI,
  response = "response",
  endpoint = "Endpoint",
 DOSE = "DOSE",
  color_fill = "DOSE",
  logistic_by_color_fill = FALSE,
  exposure_metrics = c("AUC", "CMAX"),
  exposure_metric_split = c("median", "tertile", "quartile", "none"),
  exposure_metric_soc_value = -99,
  exposure_metric_plac_value = 0,
  exposure_distribution = c("distributions", "lineranges", "none"),
  dose_plac_value = "Placebo",
  xlab = "Exposure Values",
  ylab = "Probability of Response",
  points_alpha = 0.2,
  points_show = TRUE,
  prob_obs_byexptile = TRUE,
  prob_obs_byexptile_group = "none",
  prob_text_size = 5,
  prob_obs_bydose = TRUE,
  prob_obs_bydose_plac = FALSE,
 Nresp_Ntot = TRUE,
 Nresp_Ntot_ypos = c("with percentages", "top"),
 Nresp_Ntot_sep = "/",
 binlimits_show = TRUE,
  binlimits_text_size = 5,
  binlimits_ypos = 0,
  binlimits_color = "gray70",
  dist_position_scaler = 0.2,
  dist_offset = 0,
  dist_scale = 0.9,
  lineranges_ypos = 0.2,
  lineranges_dodge = 0.15,
  lineranges_doselabel = FALSE,
  proj_bydose = TRUE,
 yproj = TRUE,
  yproj_xpos = 0,
  yproj_dodge = 0.2,
  yaxis_position = c("left", "right"),
  facet_formula = NULL,
  theme_certara = TRUE,
  return_list = FALSE
)
```

Arguments

data

Data to use with multiple endpoints stacked into response (values 0/1), Endpoint(endpoint name)

18

response	name of the column holding the response values 0/1
endpoint	name of the column holding the name/key of the endpoint default to Endpoint
DOSE	name of the column holding the DOSE values default to DOSE
color_fill	name of the column to be used for color/fill default to DOSE column
logistic_by_co	
	logistic fit split by color ? default FALSE
exposure_metric	
	<pre>name(s) of the column(s) to be stacked into expname exptile and split into exposure_metric_split</pre>
exposure_metric	
	one of "median", "tertile", "quartile", "none"
exposure_metric	
avnaavna matri	special exposure code for standard of care default -99
exposure_metric	special exposure code for placebo default 0
exposure_distr:	· · ·
	one of distributions, lineranges or none
dose_plac_value	
	string identifying placebo in DOSE column
xlab	text to be used as x axis label
ylab	text to be used as y axis label
points_alpha	alpha transparency for points
points_show	show the 0/1 observations TRUE/FALSE
prob_obs_byexp	
	observed probability by exptile TRUE/FALSE
prob_obs_byexp	
	additional grouping for exptile probabilities default none
	probability text size default to 5
prob_obs_bydose	observed probability by dose TRUE/FALSE
prob_obs_bydose	
p100_000_094000	observed probability by placebo dose TRUE/FALSE
Nresp_Ntot	show N responders/Ntotal ? TRUE/FALSE
Nresp_Ntot_ypos	-
	y position for N responders/Ntotal two text elements the first for by exptile and the second for by dose/color options include with percentages top bottom
Nresp_Ntot_sep	character string to separat N responders/ Ntotal default /
binlimits_show	show the binlimits vertical lines TRUE/FALSE
<pre>binlimits_text_</pre>	
	5 binlimits text size
	binlimits y position default to 0
binlimits_color	
	binlimits text color default to "gray70"

dist_position_scaler		
	space occupied by the distribution default to 0.2	
dist_offset	offset where the distribution position starts default to 0	
dist_scale	scaling parameter for ggridges default to 0.9	
lineranges_ypos		
	where to put the lineranges -1	
lineranges_dodg	je	
	lineranges vertical dodge value 1	
lineranges_doselabel		
	TRUE/FALSE	
proj_bydose	project the probabilities on logistic curve TRUE/FALSE	
yproj	project the probabilities on y axis TRUE/FALSE	
yproj_xpos	y projection x position 0	
yproj_dodge	y projection dodge value 0.2	
yaxis_position	where to put y axis "left" or "right"	
facet_formula	facet formula to be use otherwise endpoint ~ expname	
theme_certara	apply certara colors and format for strips and default colour/fill	
return_list	What to return if True a list of the datasets and plot is returned instead of only the plot	

Examples

```
# Example 1
library(ggplot2)
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,</pre>
                      levels=c("0", "600", "1200", "1800", "2400"),
                      labels=c("Placebo", "600 mg", "1200 mg", "1800 mg", "2400 mg"))
effICGI$STUDY <- factor(effICGI$STUDY)</pre>
effICGI$ICGI2 <- effICGI$ICGI</pre>
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI,ICGI2)</pre>
gglogisticexpdist(data = effICGI |>
                 dplyr::filter(Endpoint=="ICGI"),
                 response = "response",
                 endpoint = "Endpoint",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 exposure_distribution ="distributions",
                 yproj_xpos = -15,
                 yproj_dodge = 10,
                 dist_position_scaler = 0.1,
                 dist_offset = -0.1,
                 Nresp_Ntot_ypos = c("with percentages", "bottom"),
```

```
prob_obs_bydose_plac = FALSE,
                 prob_obs_byexptile_group = "none",
                 binlimits_ypos = -0.08,
                 points_alpha= 1)
# Example 2
gglogisticexpdist(data = effICGI |>
                 dplyr::filter(Endpoint=="ICGI"),
                 response = "response",
                 endpoint = "Endpoint",
                 exposure_metrics = c("CMAX"),
                 exposure_metric_split = c("tertile"),
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 exposure_distribution ="lineranges",
                 lineranges_ypos = -0.2,
                 lineranges_dodge = 0.2,
                 prob_obs_bydose = TRUE,
                 yproj_xpos = -1,
                 yproj_dodge = 2,
                 dist_position_scaler = 0.1)
## Not run:
#' # Example 3
library(ggh4x)
gglogisticexpdist(data = effICGI |>
                 dplyr::filter(Endpoint=="ICGI"),
                 response = "response",
                 endpoint = "Endpoint",
                 DOSE = "DOSE",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_distribution ="distributions",
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 dist_position_scaler = 0.15)+
 facet_grid2(Endpoint~expname+DOSE2,scales="free",
 margins = "DOSE2",strip = strip_nested())
# Example 4
effICGI$SEX <- as.factor(effICGI$SEX)</pre>
gglogisticexpdist(data = effICGI |>
                 dplyr::filter(Endpoint=="ICGI"),
                 response = "response",
                 endpoint = "Endpoint",
                 DOSE = "DOSE",
                 color_fill = "SEX",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_distribution ="distributions",
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 lineranges_ypos = -0.2,
```

```
yproj_xpos = -10,
                 yproj_dodge = 20,
                 prob_text_size = 6,
                 binlimits_text_size = 6,
                 Nresp_Ntot = TRUE,
                 dist_position_scaler = 0.15)+
                 ggplot2::scale_x_continuous(breaks = seq(0,350,50),
                 expand = ggplot2::expansion(add= c(0,0),mult=c(0,0)))+
                 ggplot2::coord_cartesian(xlim = c(-30,355))+
              ggplot2::facet_grid(Endpoint~expname+color_fill2, margins ="color_fill2")
#Example 4b
 effICGI$SEX <- as.factor(effICGI$SEX)</pre>
 gglogisticexpdist(data = effICGI |>
 dplyr::filter(Endpoint =="ICGI"),
                 response = "response",
                 endpoint = "Endpoint",
                 color_fill = "SEX",
                 exposure_metrics = c("AUC"),
                 exposure_metric_split = c("quartile"),
                 exposure_metric_soc_value = -99,
                 exposure_metric_plac_value = 0,
                 dist_position_scaler = 1, dist_offset = -1 ,
                 yproj_xpos = -20 ,
                 yproj_dodge = 20 ,
                 exposure_distribution ="lineranges")
#Example 5
gglogisticexpdist(data = effICGI |> dplyr::filter(Endpoint=="ICGI"),
                  response = "response",
                  endpoint = "Endpoint",
                  DOSE = "DOSE",
                  exposure_metrics = c("AUC"),
                  exposure_metric_split = c("quartile"),
                  exposure_distribution ="distributions",
                  exposure_metric_soc_value = -99,
                  exposure_metric_plac_value = 0,
                  dist_position_scaler = 0.15)+
                 facet_grid(Endpoint~expname+exptile,scales="free",
                 margins = "exptile")
#Example 6
a <- gglogisticexpdist(data = effICGI, #
                  response = "response",
                  endpoint = "Endpoint",
                  DOSE = "DOSE",yproj_dodge = 36,
                  exposure_metrics = c("AUC"),
                  exposure_metric_split = c("quartile"),
                  exposure_distribution ="lineranges",
                  exposure_metric_soc_value = -99,
                  exposure_metric_plac_value = 0) +
 facet_grid(Endpoint~expname, switch = "both")
b <- gglogisticexpdist(data = effICGI, #</pre>
                    response = "response",
```

```
endpoint = "Endpoint",
                    DOSE = "DOSE",yproj_dodge = 2,
                    exposure_metrics = c("CMAX"),
                    exposure_metric_split = c("quartile"),
                    exposure_distribution ="lineranges",
                    exposure_metric_soc_value = -99,
                    exposure_metric_plac_value = 0,
                    yaxis_position = "right")+
 facet_grid(Endpoint~expname, switch = "x")+
 theme(strip.text.y.right = element_blank(),
        strip.background.y = element_blank())
library(patchwork)
(a | b ) +
 plot_layout(guides = "collect", axes = "collect_x")&
  theme(legend.position = "top")
#Example 7
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,</pre>
                      levels=c("0", "600", "1200", "1800", "2400"),
                      labels=c("Placebo", "600 mg", "1200 mg", "1800 mg", "2400 mg"))
effICGI$STUDY <- factor(effICGI$STUDY)</pre>
effICGI$ICGI2 <- ifelse(effICGI$ICGI7 < 4,1,0)</pre>
effICGI$ICGI3 <- ifelse(effICGI$ICGI7 < 5,1,0)</pre>
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI,ICGI2,ICGI3)</pre>
effICGI$endpointcol2 <- effICGI$Endpoint</pre>
gglogisticexpdist(data = effICGI,
                  response = "response",
                 endpoint = "Endpoint",
                  exposure_metrics = c("AUC"),
                  exposure_metric_split = c("median"),
                  exposure_metric_soc_value = -99,
                  exposure_metric_plac_value = 0,
                  color_fill = "endpointcol2",
                  prob_obs_byexptile = FALSE,
                  logistic_by_color_fill = TRUE,
                  Nresp_Ntot = TRUE,
                  exposure_distribution ="distributions",
                  lineranges_doselabel = TRUE,
                  prob_obs_bydose = TRUE,
                  proj_bydose = FALSE,
                  yproj = FALSE,
                  dist_position_scaler = 0.1,
                  dist_offset = -0.1)+
  facet_grid(expname~.,scales="free_x")
```

End(Not run)

logistic_data

Description

A dataset containing data suitable for logistic regression

Usage

logistic_data

STUDY Study identifier

Format

A data frame with 600 rows and 10 variables

ID Subject Identifier
IDOSE Dose, in mg
GBDS Dose, in alternative salt
SEX Sex of the subject
AGE age of the subject, in years
WT weight of the subject, in kg
RACE Race of the subject
CRCL Creatinine clearance
BRLS RLS score
PRLS RLS score
AUC Area under the curve exposure
CMAX Maximun concentration exposure

ICGI response 0/1

ICGI7 response 1 to 7

Source

inspired from a real data submission

Examples

logistic_data

run_ggquickeda

Description

Run the ggquickeda application.

Usage

```
run_ggquickeda(data = NULL, ...)
```

Arguments

data	The initial data.frame to load into the application.
	Additional arguments for bookmarking

Examples

```
if (interactive()) {
   run_ggquickeda()
}
```

sample_data

```
Simulated Pharmacokinetic Concentration Data
```

Description

A dataset containing concentration-time data with the given dose and some subject characteristics to help in the app exploration.

Usage

sample_data

Format

A data frame with 600 rows and 10 variables

ID Subject Identifier, an integer from 1 to 150

Time Time of dose given or drug sample measured, in hours

Amt dose given at the corresponding Time, in milligrams

Conc drug concentrations in the plasma sample, in mg/L

Age age of the subject, in years

Weight weight of the subject, in kg

Gender Sex of the subject, a factor with Female and Male levels

Race Race of the subject, a factor with Asian, Black, Caucasian, Hispanic and Other levels

Dose dose group of the subject, in milligrams

AGECAT age category of the subject, a variable cutting Age into two values 0/1

Source

"sd_oral_richpk" from 'PKPDmisc' R package with an additional AGECAT variable

Examples

sample_data

stat_km

Adds a Kaplan Meier Estimate of Survival

Description

Adds a Kaplan Meier Estimate of Survival

Usage

```
stat_km(
  mapping = NULL,
  data = NULL,
  geom = "km",
  position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  trans = scales::identity_trans(),
  firstx = 0,
  firsty = 1,
  type = "kaplan-meier",
  start.time = 0,
  ...
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data	The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
geom	The geometric object to use to display the data for this layer. When using a stat_*() function to construct a layer, the geom argument can be used to override the default coupling between stats and geoms. The geom argument accepts the following:
	• A Geom ggproto subclass, for example GeomPoint.
	• A string naming the geom. To give the geom as a string, strip the function name of the geom_ prefix. For example, to use geom_point(), give the geom as "point".
	• For more information and other ways to specify the geom, see the layer geom documentation.
position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
trans	Transformation to apply to the survival probabilities. Defaults to "identity". Other options include "event", "cumhaz", "cloglog", or define your own using trans_new.
firstx, firsty	the starting point for the survival curves. By default, the plot program obeys tradition by having the plot start at $(0, 1)$.
type	an older argument that combined stype and ctype, now deprecated. Legal values were "kaplan-meier" which is equivalent to stype=1, ctype=1, "fleming-harrington" which is equivalent to stype=2, ctype=1, and "fh2" which is equivalent to stype=2, ctype=2.

start.time	numeric value specifying a time to start calculating survival information. The resulting curve is the survival conditional on surviving to start.time.
	Other arguments passed to survfit.formula

Details

This stat is for computing the confidence intervals for the Kaplan-Meier survival estimate for rightcensored data. It requires the aesthetic mapping x for the observation times and status which indicates the event status, 0=alive, 1=dead or 1/2 (2=death). Logical status is not supported.

Value

a data.frame with additional columns:

Х	x in data
У	Kaplan-Meier Survival Estimate at x

Aesthetics

stat_km understands the following aesthetics (required aesthetics are in bold):

- time The survival times
- status The censoring indicator, see Surv for more information.
- alpha
- color
- linetype
- size

Examples

```
library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) +
stat_km()</pre>
```

Examples illustrating the options passed to survfit.formula

```
p1 <- ggplot(df, aes(time = time, status = status))
p1 + stat_km()
p1 + stat_km(trans = "cumhaz")
# for cloglog plots also log transform the time axis
p1 + stat_km(trans = "cloglog") + scale_x_log10()
p1 + stat_km(type = "fleming-harrington")
p1 + stat_km(start.time = 5)</pre>
```

stat_kmband

Description

Adds confidence bands to a Kaplan Meier Estimate of Survival

Usage

```
stat_kmband(
 mapping = NULL,
 data = NULL,
 geom = "kmband",
 position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  trans = "identity",
  firstx = 0,
  firsty = 1,
  type = "kaplan-meier",
 error = "greenwood",
 conf.type = "log",
  conf.lower = "usual",
 start.time = 0,
  conf.int = 0.95,
  • • •
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options:
	If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
geom	The geometric object to use to display the data for this layer. When using a stat_*() function to construct a layer, the geom argument can be used to override the default coupling between stats and geoms. The geom argument accepts the following:

	• A Geom ggproto subclass, for example GeomPoint.
	• A string naming the geom. To give the geom as a string, strip the function name of the geom_ prefix. For example, to use geom_point(), give the geom as "point".
	• For more information and other ways to specify the geom, see the layer geom documentation.
position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
trans	Transformation to apply to the survival probabilities. Defaults to "identity". Other options include "event", "cumhaz", "cloglog", or define your own using scales::trans_new().
firstx, firsty	the starting point for the survival curves. By default, the plot program obeys tradition by having the plot start at $(0,1)$.
type	an older argument that combined stype and ctype, now deprecated. Legal values were "kaplan-meier" which is equivalent to stype=1, ctype=1, "fleming-harrington" which is equivalent to stype=2, ctype=1, and "fh2" which is equivalent to stype=2, ctype=2.
error	either the string "greenwood" for the Greenwood formula or "tsiatis" for the Tsi- atis formula, (only the first character is necessary). The default is "greenwood".
conf.type	One of "none", "plain", "log" (the default), "log-log" or "logit".
conf.lower	a character string to specify modified lower limits to the curve, the upper limit re- mains unchanged. Possible values are "usual" (unmodified), "peto", and "mod- ified". The modified lower limit is based on an "effective n" argument. The confidence bands will agree with the usual calculation at each death time, but unlike the usual bands the confidence interval becomes wider at each censored observation. The extra width is obtained by multiplying the usual variance by a factor m/n, where n is the number currently at risk and m is the number at risk at the last death time. (The bands thus agree with the un-modified bands at each death time.) This is especially useful for survival curves with a long flat tail. The Peto lower limit is based on the same "effective n" argument as the mod- ified limit, but also replaces the usual Greenwood variance term with a simple approximation. It is known to be conservative.

stat_kmband

start.time	numeric value specifying a time to start calculating survival information. The resulting curve is the survival conditional on surviving to start.time.
conf.int	the level for a two-sided confidence interval on the survival curve(s). Default is 0.95.
	Other arguments passed to survfit.formula

Details

This stat is for computing the confidence intervals for the Kaplan-Meier survival estimate for rightcensored data. It requires the aesthetic mapping x for the observation times and status which indicates the event status, 0=alive, 1=dead or 1/2 (2=death). Logical status is not supported.

Value

a data.frame with additional columns:

х	x in data
ymin	Lower confidence limit of KM curve
ymax	Upper confidence limit of KM curve

Aesthetics

stat_kmband understands the following aesthetics (required aesthetics are in bold):

- time The survival times
- status The censoring indicator, see Surv for more information.
- alpha
- color
- linetype
- linewidth

Examples

```
library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) +
    stat_km()</pre>
```

Examples illustrating the options passed to survfit.formula

```
p1 <- ggplot(df, aes(time = time, status = status))
p1 + stat_km() + stat_kmband(conf.int = .99)
p1 + stat_kmband(error = "greenwood",fill="red",alpha=0.2) +
stat_kmband(error = "tsiatis",fill="blue",alpha=0.2)+ stat_km()
p1 + stat_km() + stat_kmband(conf.type = "log-log")+ stat_kmband(conf.type = "log")</pre>
```

stat_kmticks

Description

Adds tick marks to a Kaplan Meier Estimate of Survival

Usage

```
stat_kmticks(
  mapping = NULL,
  data = NULL,
  geom = "kmticks",
  position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  trans,
  ...
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options:
	If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
geom	The geometric object to use to display the data for this layer. When using a stat_*() function to construct a layer, the geom argument can be used to override the default coupling between stats and geoms. The geom argument accepts the following:
	• A Geom ggproto subclass, for example GeomPoint.
	• A string naming the geom. To give the geom as a string, strip the function name of the geom_ prefix. For example, to use geom_point(), give the geom as "point".
	• For more information and other ways to specify the geom, see the layer geom documentation.

position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
trans	Transformation to apply to the survival probabilities. Defaults to "identity". Other options include "event", "cumhaz", "cloglog", or define your own using trans_new.
	Other arguments passed to survfit.formula

Details

This stat is for computing the tick marks for a Kaplan-Meier survival estimate for right-censored data. The tick marks will appear at each censoring time which is also not a death time, which is the default for plot.survfit. It requires the aesthetic mapping x for the observation times and status which indicates the event status, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death).

Value

a data.frame with additional columns:

xx in datayKaplan-Meier Survival Estimate at x

Aesthetics

stat_kmticks understands the following aesthetics (required aesthetics are in bold):

- time The survival times
- status The censoring indicator, see Surv for more information.
- alpha
- color
- linetype
- size

See Also

stat_km; stat_kmband

Examples

```
library(ggplot2)
sex <- rbinom(250, 1, .5)
df <- data.frame(time = exp(rnorm(250, mean = sex)), status = rbinom(250, 1, .75), sex = sex)
ggplot(df, aes(time = time, status = status, color = factor(sex))) +
   stat_km() + stat_kmticks()</pre>
```

34

Index

* datasets logistic_data, 24 sample_data, 25 aes(), 2, 5, 7, 26, 29, 32 borders(), 3, 6, 8, 27, 30, 33 fortify(), 2, 5, 7, 27, 29, 32 geom_km, 2 $\texttt{geom_kmband}, \texttt{4}$ geom_kmticks,7 ggcontinuousexpdist, 9 ggkmrisktable, 13 gglogisticexpdist, 17 ggplot(), 2, 5, 7, 27, 29, 32 key glyphs, *4*, *6*, *8* layer geom, 27, 30, 32 layer position, 3, 5, 8, 27, 30, 33 layer stat, 3, 5, 8 layer(), *3*, *4*, *6*, *8* logistic_data, 24 plot.survfit, 33 run_ggquickeda, 25 sample_data, 25 scales::trans_new(), 30 stat_km, 26, 34 stat_km(), 4 stat_kmband, 29, 34 $stat_kmband(), 6$ stat_kmticks, 9, 32 stat_kmticks(), 9 Surv, 28, 31, 33 survfit.formula, 28, 31, 33 trans_new, 27, 33